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We develop a CAD-free geometry engine for shape optimization of complex, three-
dimensional geometries represented by surface discretizations. This method permits shape
optimization of geometries for which no a-priori parametric CAD representation exists. The
geometry engine consists of three parts: geometric preprocessing to improve discretization
quality, parametric definition of deformation modes, and a physics-based deformation en-
gine. The deformation engine proceeds by analogy to the elastic behavior of thin plates
and shells, mimicking the natural behavior of engineering materials under applied loads
and strains. The parametric definition of the deformation modes is performed automat-
ically by decomposing the initial geometry into patches upon which loads, strains, and
constraints may be applied. These parameters are created hierarchically in order to allow
both flexibility and efficiency during shape optimization. We provide example deformations
using this geometry engine in conjunction with surfaces represented by tens and hundreds
of thousands of triangles and timings on the order of several minutes using commodity
hardware.

I. Introduction

A number of optimization techniques have been successfully employed to improve vehicle performance
during the engineering design process. In order to reduce the amount of manual effort and expert knowledge
required during problem formulation, we have developed a CAD-free geometry engine for shape optimization
that combines the efficiency of parametric CAD with the flexibility of discrete surface representation.

Geometry is often defined through parameters that specify the size, shape, and location of basic building
blocks. This is the case when optimization is coupled with parametric Computer-Aided Design (CAD)
packages, where parameters such as sweep, wing span, or fuselage diameter offer natural control over complex
geometries. This approach to geometry definition offers a ready set of design variables for use during the
shape optimization process.

While this CAD-based approach is attractive, there are several situations in which a CAD-free option
can ease problem setup and provide greater flexibility during design. First, parametric CAD models are
not always easily obtainable for geometries of interest. Often, triangulated surface meshes are the only
representation available for so-called legacy geometries, shapes derived during previous analysis or design
studies. In order to compare such studies to contemporary design tools, a parametric model must be re-
created in a current CAD package. Since this may require a large amount of manual effort, a geometry engine
that operates on pre-existing surface triangulations alone becomes an attractive alternative. Additionally,
the use of triangulated surfaces to represent geometry removes difficulties associated with conversion between
different CAD packages and versions. It also eliminates compatibility issues associated with CAD packages
that run on operating systems outside the high performance computing environment.

Furthermore, the flexibility of CAD-based design tools to identify a global optimum is dependent upon the
parametric definition of the initial geometry. Creating a good set of parameters for complicated geometries
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can require expert knowledge during model creation. There is also a tradeoff between the size of the parameter
set, more parameters offer greater flexibility in shape control, and the computational cost of the overall
optimization process, since the number of steps to the optimal solution generally increases with number of
design variables. This adds a further level of “up front” expert input to parameterize an initial geometry in
a manner that offers both flexibility and efficiency in the design process.

In order to alleviate these requirements for manual labor and expert knowledge we investigate the utility of
a CAD-free geometry engine that operates on surface triangulations and incorporates an automated approach
to parameter set identification. There are three primary elements that we require to define this engine:
mesh preprocessing, parameter set identification, and a shape deformation operator. Mesh pre-processing
techniques improve triangulation quality in order to reduce discretization errors during subsequent numerical
analysis. The parameter set offers a ready pool of design variables. The deformation operator then uses the
base geometry and design variables to create modified geometries for analysis during optimization.

A number of preprocessing techniques exist to improve the triangulation quality in surface discretizations
that may contain defects detrimental to numerical analysis. These are primarily meant to improve non-
topological properties associated with the quality of the local surface tessellation such as high aspect ratio
triangles, degenerate edges, and high valence vertices.1,2 These methods have been extended to identify and
preserve geometric features such as creases and corners.

Several deformation operators and parameter set identification techniques have been investigated for use
in optimization of geometries represented by triangulated surface meshes. Hicks-Henne bump functions3

were used by LeGresley and Alonso4 in airfoil design using Proper Orthogonal Decomposition. Samareh5

employed freeform deformation based on trivariate tensor-product volume splines for optimization of a variety
of three-dimensional aerodynamic shapes and has provided an excellent survey of shape parameterization
techniques.6 Desideri and Janka7 extended the freeform deformation approach to a hierarchical parameter
set and applied it to a number of three dimensional design problems for wings and complete aircraft. Radial
basis functions provide a similar method for modifying discretized surfaces embedded in volumetric spaces
and have been employed by Jakobsson and Amoignon8 in the optimization of wings. Fudge, Zingg, and
Haimes9 developed a CAD-free system in which B-spline surface patches were fit to the initial geometry
and the control net of these patches formed the parameterization. Recently, multiresolution decomposition
techniques, with subdivision surface modelers,10 have been applied by Dube et al.11 to turbine design.

These methods represent two classes of deformation operators. The first class of operators encode complete
shape. Operators from this class provide the basis for CAD systems in which constructive solid modelers use
a recipe of primitive operations to construct complete geometries. Conversely, a second class of operators
encode shape modification. In this case, the recipe of primitive operations does not contain the full set of
information required to construct a complete geometry from scratch, only the information required to deform
an initial geometry. In either case, adjusting parameters in the recipe generates various instances of the basic
geometry and thus the parameter set defines a family of many shapes derived from a common parent.

There are several important distinctions between these two classes of deformation operators. When
considering scalability and problem size, parameter sets that encode the complete shape grow in size as the
complexity of the geometry increases. This can have a large impact on the efficiency of shape optimization
problems by expanding the size of the design space, thus increasing overall computational cost, and adding
difficulty in constraint specification. Conversely, if the parameter set only encodes deformations to an initial
geometry, the dimension of the design space is set by the scope of allowable deformations.

Many of these deformation-encoding methods suffer from a potential drawback. Optimization of a baseline
geometry is often an exercise in improving existing features, for example, modifications to a wing such as
change in sweep, span, or airfoil profile. Therefore, a good deformation operator would allow robust control
over existing features using as few parameters as possible. This would imply that the parameter set is
closely linked to the structural features of the initial geometry. This goal, while intuitive, is difficult to
accomplish with many of the deformation-encoding techniques mentioned above because they do not preserve
important structural information, i.e. they are not structure-preserving. For instance, bump functions
add deformations without regard to topological features such as crease lines and therefore require complex
constraint specifications for practical applications. Volumetric techniques, in which a surface is embedded
in a deformed volume of space, are reliant on the definition of that volume, which does not necessarily relate
to structural features of the original geometry.

One interesting approach to shape deformation involves the approximation of an initial surface by an
elastic engineering material that responds to the application of loads and strains. There are several advan-
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tages to such an approach. First, regions of the initial shape can simply be excluded from the deformation
process. This makes geometry constraint specification trivial during the shape optimization process. Second,
the loads and strains are applied to patches of the initial geometry. These patches may be automatically
created by using curvature or objective function sensitivity information to provide efficient, intuitive control
over prominent features of the initial geometry such as wings, tails, etc. Further, these regions may be
defined hierarchically, allowing for multi-fidelity control over the initial shape in response to factors such as
desired objective function tolerance and/or overall computational resource availability.

We offer several contributions in this paper. First we propose a modified form of the PriMo method of
Botsch et al., a nonlinear approximation to the elastic behavior of thin shells and plates, as a deformation
operator for CAD-free shape optimization. We then outline an approach for automatically determining a
multi-fidelity parameter set for the deformation of complex, three-dimensional geometries using this operator.
We also combine these two techniques with preprocessing methods into a geometry engine for use with shape
optimization design tools.

The remainder of the paper is organized as follows. Section II describes the PriMo deformation operator.
Section III introduces an automated approach to hierarchical parameter identification. Section IV links
this parameter set to design variables for use in shape optimization. Section V discusses our approach to
geometric preprocessing using feature sensitive remeshing. Finally, Section VI provides several examples
demonstrating the geometry engine.

II. Structure-Preserving Shape Deformation Using PriMo

Unstructured surface triangulations have increasingly become the method of choice for complex shape
representation in the computer graphics and digital content creation industry.1 The success of this approach
has led that community to heavily investigate methods for high quality deformation of geometries represented
in this fashion.

One such class of deformation techniques is obtained by modeling an initial surface as an elastic structure
that responds to applied loads and strains. This is accomplished by approximating the surface as a set of
thin shells and plates and then applying simplified energy methods to calculate structural deformations.
These deformations represent an updated minimum energy configuration in response to applied loads and
strains. Thus, this class of methods is referred to as generating a minimum variational energy surface.

There are two primary considerations in developing these methods: the fidelity of the elastic approxima-
tion to a real structure and the approach to discretization for use with surface triangulations. The equations
chosen to represent elastic behavior may range from the full nonlinear finite element method down to highly
linearized, simplistic approximations. The discretization approach may be based on a discrete triangulation
or fitted analytic surfaces. Clearly, the choice on both fronts has a strong impact on both realism and
computational cost during deformation.

The PriMo algorithm of Botsch et al.13 represents a good tradeoff between these competing measures for
aerodynamic shape optimization. This method models a surface as a thin layer of volumetric prisms coupled
by a nonlinear elastic energy. The nonlinear energy is calculated by integration of infinitesimal, stretched
elastic fibers between prism faces. This integration improves robustness with respect to triangulation quality
and the use of volumetric prisms allows minimization of stretching and bending energies, providing a realistic
model of the behavior of actual physical structures.

II.A. PriMo Overview

Figure 1 shows the basic steps used in the PriMo algorithm to deform an initial surface, S = {a, b, c, d, e, f},
to a modified surface, S′ = {a′, b′, c′, d′, e′, f ′}. First, a layer of volumetric rigid prisms is extruded along the
vertex normals of an initial polygonal mesh. These prisms are coupled through a nonlinear energy calculated
by an integration over abutting prism faces. Note that this means the initial surface represents a minimum
energy configuration, since all abutting prism faces are coincident immediately after extrusion along vertex
normals. Second, the system is forced from its initial equilibrium by applying loads and/or strains. The
motion of individual prisms may also be constrained in order to anchor regions of the initial geometry. Third,
a new minimum energy configuration is found by transforming unconstrained prisms in order to minimize
the elastic energies introduced by the applied loads and strains. Finally, a deformed surface is constructed by
translating unconstrained vertices in the original mesh according to the updated locations of their incident
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Figure 1. The basic PriMo algorithm consists of four steps: 1) prism initialization, 2) setting boundary conditions to
drive deformation, 3) solving for updated prism locations and orientations, and 4) projecting the modified prisms back
to a deformed surface.

prisms.
The use of volumetric prisms is integral to the PriMo algorithm in that the prisms allow the calculation

of elastic energy over abutting faces to include moment information. This leads to deformations that more
closely resemble the behavior of stiff elastic materials. This is because minimizing stretching alone leads to a
minimum area surface, while minimizing bending leads to a minimum curvature surface. Minimum curvature
surfaces correspond more closely to the natural deformation of structures with stiffness, and therefore the
inclusion of both is important to providing a flexible and efficient geometry engine for shape optimization.
Furthermore, the height of the prisms is variable, in order to specify stiffness locally, and may be used as
an additional parameter in shape control. Although these prisms may overlap in regions of high curvature,
the energy calculation is based solely on the integration of a norm describing separation between abutting
prism faces. Since this number is always positive, intersections between prisms do not negatively impact the
deformation process.

Subsets of the prisms created using several typical legacy geometries are shown in Figure 2. The prisms
associated with the wing geometry seem to correspond to a typical volume mesh, whereas the prisms asso-
ciated with the more complex hypersonic vehicle actually overlap in places. However, since this does not
adversely impact the energy calculation, both prism sets are equally acceptable.

II.B. Energy Definitions

During deformation, the PriMo algorithm seeks an updated minimum energy equilibrium in the presence of
applied loads and strains. The total energy, E, present in the system is a combination of internal stretching
and bending as well as externally applied loads,

E = Einternal + Eexternal (1)

The energy associated with internal stretching and bending, which also reflects applied strains,
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Figure 2. Selected volumetric prisms for hypersonic vehicle and wing (shown extruded outward along vertex normals).

Einternal =
∑
{i,j}

wijEij (2)

is calculated as a summation over all prisms, i and j, with abutting faces. This summation reflects the elastic
energy generated by stretching infinitesimal fibers between these faces,

Eij =
∫ 1

0

∫ 1

0

||f i→j(u, v)− f j→i(u, v)||2dudv (3)

and a weighting factor,

wij =
||eij ||2

Ai + Aj
(4)

comprised of the areas of triangles i and j, Ai and Aj , as well as the length of their shared edge in the
original surface triangulation, ||eij ||.

Figure 3. During deformation, two originally abutting prisms, i and j, are separated, creating a local stretching and
bending energy. This energy is calculated by the integrated norm between the two abutting prism faces.

Figure 3 illustrates this calculation between two prism faces. The prisms start in an initial minimum
energy state with zero stretching and bending energy between the abutting faces. The prisms are then
pried apart, creating a local nonzero energy. This energy is quadratic and calculated in closed form, using a
bi-linear interpolation over the u− v parameter space of the faces, so that

Eij =
∫ 1

0

∫ 1

0

||f i→j(u, v)− f j→i(u, v)||2dudv =
1
9

1∑
i,j,k,l=0

aij · bkl · 2(−|i−k|−|j−l|) (5)
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Here, f i→j(u, v) is a point on the face of prism i that abuts prism j. This face is parameterized by u ∈ [0, 1],
v ∈ [0, 1], and f j→i(u, v) is defined similary. {a00, a10, a01, a11} and {b00, b10, b01, b11} represent the corners
of the two prism faces so that, for example, the bi-linear interpolation of the x coordinate function over the
face of prism i abutting prism j is,

f i→j
x (u, v) =

[
1− u u

] [
a00x

a01x

a10x
a11x

] [
1− v

v

]
(6)

The second term of the total energy, E, from Equation 1,

Eexternal =
∑
k∈V

Ek (7)

represents a summation of the energies due to externally applied loads on a subset V of vertices in the initial
triangulated surface. The energy at each vertex with an externally applied load is calculated as the product
of a spring constant, λk, and squared distance between a field point, vtk

, and current vertex location, vk,

Ek = λk||vtk
− vk||2 (8)

This field point,

vtk
= vki +

Fk

2λk
(9)

is calculated at the beginning of the deformation process as a function of the applied load, Fk, and initial
vertex location, vki

, of vertex k.

II.C. Solution Technique

Once strains and loads have been applied to the initial prism configuration, solving for a modified surface
becomes a geometric optimization problem where we seek to minimize the sum of internal and external
elastic energies,

min
Ri,ti

Einternal + Eexternal (10)

through rigid body rotations, Ri, and translations, ti, of all unconstrained prisms, i. Botsch et al. proposed
to approximate these rigid motions to first order as,

Ri(·) + ti ≈ (·) + ωi × (·) + vi := Ai (11)

where ωi represents a rotational velocity vector and vi a translational velocity vector, and solve the quadratic
minimization problem,

min
{vi,ωi}

∑
{i,j}

∫ 1

0

∫ 1

0

||Ai(f i→j(u, v))−Aj(f j→i(u, v))||2dudv +
∑
i∈V

λi||vt(i)−Ai(v(i))||2
 (12)

The solution is obtained by setting the partial derivatives, with respect to the translational and rotational
velocities of each prism, of this quadratic form to zero. This results in a linear system for an affine transfor-
mation of each unconstrained prism. The ensuing equations represent a sparse, symmetric positive definite
block system with 6n equations for a surface tessellation comprised of n triangles. The system is generally
quite sparse as block entries occur only between neighboring triangles and in the local neighborhood of a
vertex with a target location.

The original PriMo algorithm was intended for use with interactive applications and, thus, was limited
to solution methods with timings on the order of several seconds. In order to reduce the solution time for
dense triangulations, a mesh sequencing approach was used where the actual linear system was only solved
on a coarsened version of the mesh. Several sweeps of a nonlinear relaxation operator were also applied on
each finer level of the hierarchy, resulting in an approximation to the overall nonlinear deformation operator.

Since objective function solutions in aerodynamic optimization problems are expensive, we can afford a
deformation operator with greater computational cost. Therefore, in Algorithm 1, we propose a modified
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solution approach with the principle difference that we solve the linear system iteratively on the original, fine
mesh until the scale factor of the displacement vector between linear solutions drops below a sufficiently small
ε. These linear updates are solved using the CHOLMOD solver distributed with SuiteSparse.14,15,16,17,18

While efficient, this direct method still faces scalability issues with densely discretized geometries. In order
to mitigate such limitations in the future, we are currently implementing an agglomeration multigrid solver,
for the solution of the linear iteration, to reduce memory requirements and allow parallelization.

Algorithm 1 Modified PriMo Algorithm
1: Initialize volumetric prisms
2: ν = 1.
3: while ν > ε do
4: Calculate E0 = global energy
5: Populate linear Ax = b system
6: Solve for x
7: Apply rigid update νx
8: Calculate Ef = global energy
9: while Ef > E0 && ν > ε do

10: ν = ν/2
11: Apply rigid update νx
12: Calculate Ef = global energy
13: end while
14: end while
15: Project modified prisms to deformed surface

Furthermore, the linearized affine transformation associated with each unconstrained prism results in a
local shape matching problem to determine a closest rigid transformation. The use of rigid transformations
prevents degradation of mesh quality during the transformation process and increases overall robustness of
the deformation operator.13 The rotational and translational velocities are scaled by a factor, ν, during each
solution step, to the maximum value that reduces the global energy. Once ν is less than ε, the process has
converged and unconstrained surface vertices are translated to the mean location of their incident prism
faces.

III. Automated Parameter Discovery

We make the observation that optimization of a baseline geometry is generally an exercise in improving
existing features. Therefore, an automated parameterization should capture, and allow modification of,
initial components and features within the geometry.

When using the PriMo deformation operator, shape modifications are initiated by applying boundary
conditions over patches of triangles. The parameters define these boundary conditions which closely links
the parametric definition to the underlying patches. Therefore, a method to decompose monolithic trian-
gulations into patches that capture features or components of the geometry offers an intuitive approach for
automatically discovering a parameter set.

In order to create these patches we require two components: a method to identify boundaries between
patches and a method to automatically generate a hierarchical set of these patches.

III.A. Curvature-Based Patch Boundaries

Regions of high curvature typically define boundaries between intuitive components of a geometry. There-
fore, one potential method is a decomposition of monolithic triangulations into patches of similar curvature.
However, producing accurate estimates of curvature over poor quality surface triangulations can prove prob-
lematic due to discretization of the chosen curvature measure.

For example, one common surface Laplacian, the cotangent formulation of the Laplace-Beltrami operator,
evaluates to the mean curvature normal when applied to the coordinate function of a surface,1

4Sf(v) :=
2

A(v)

∑
vi∈N1(v)

(cot αi + cot βi)(f(vi)− f(v)) (13)
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where A(v) is the Voronoi area surrounding vertex v, vi is a vertex in the one-ring of v, N1(v), f is the
coordinate function, and α and β are the interior angles opposing the edge connecting v and vi. This
formulation suffers from the defect that the cotangent terms become negative in the presence of obtuse
triangles, which rapidly degrades the accuracy of such methods in general triangulations.

To mitigate these defects, Jiao et al.19 proposed a robust method for feature detection and curvature
estimation based on the quadric metric tensor, A,

A = NTWN (14)

where N ∈ <mx3 is a matrix with rows containing the normal vectors of the m triangles neighboring vertex p
and W is a diagonal matrix of weights. These weights are taken to be the angle, in radians, in each triangle
of the one-ring centered at vertex p.

An eigenanalysis is performed in order to classify each vertex. In general, the quadric metric tensor has
three large eigenvalues at a corner, two large eigenvalues at a crease, and one large eigenvalue at a point on
a smooth surface. The number of large eigenvalues at a given vertex is determined by a ratio threshold that
loosely corresponds to the dihedral angle, τ , across an edge.

Figure 4. QMT based vertex classification: nonsmooth vertices, τ = 1o, 5o, and 20o.

Figure 4 shows vertices classified as nonsmooth using this approach with increasing angle threshold, τ .
After vertex classification, any edge in the triangulation with two nonsmooth vertices and dihedral angle
above a minimum value is also classified as nonsmooth.

III.B. Hierarchical Patch Segmentation

Patches are identified by seeding smooth regions and painting outwards to nonsmooth edge boundaries. Once
all smooth patches have been identified for a given curvature threshold, the nonsmooth regions are combined
into patches in a similar manner. By starting with a large initial threshold and then varying it we are able to
automatically develop recursive patches at different scales. Patches with less than a given percentage of the
total number of surface triangles are filtered out and combined with larger neighbors of the same curvature
classification.

There are several possible approaches to identify patches for decomposition at each level in the hierarchy.
One automated approach is to simply split them all. However, this quickly results in a large number of
surface patches, which degrades the efficiency of using these patches as handles to the deformation operator.
A second automated approach is to decompose the largest, or several largest, patches at each level. Once
an objective function has been defined, another automated approach would be to decompose the patches
for which the objective function has the the greatest integrated sensitivity. This would allow automatically
provide higher fidelity surface control in regions of the geometry with the greatest impact on the final
design. A number of interactive approaches are possible as well, such as decomposing the patch at each level
containing a specified triangle of the original surface. This is the approach taken in Figure 5 where a triangle
on the wing of the initial geometry is selected and the patch containing that triangle is further decomposed
at each level in the hierarchy. This approach generates detailed control over the surface of the wing while
offering lower fidelity control over regions of the geometry with less influence on an objective function such
as lift to drag ratio. Timings provided were performed on a desktop workstation.a

a3GHz dual quad-core Intel Xeon, single thread
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Figure 5. Hierarchical segmentation of hypersonic vehicle comprised of 418k triangles. Decomposition performed on a
desktop workstation: level 1 - 9.5 sec, level 2 - 80 sec, level 3 - 11.5 sec.

IV. Shape Deformation Using Design Variables

The deformation and parameter set identification methods described above are intended for integration
with design tools that solve a shape optimization problem which consists of determining values of design
variables, X, that minimize a given objective function, J ,

min
X

J (D(M,X)) (15)

where D is the deformation operator, M is the original, unmodified surface triangulation, and the design
variables, X, represent applied loads and strains over the surface patches described in Section III. The full
parametric definition of deformation modes consists of applied loads and strains over each individual patch.
The set of design variables, X, is a subset of the full parameter set that may be either selected by a designer
or generated automatically, e.g. all parameters controlling the shape of a wing or other components for
which the objective function has high sensitivity.

Figure 6. Design variables in the shape optimization process correspond to applied loads and strains.

Figure 6 shows the two types of boundary conditions that may be used to form design variables for the
shape optimization process. Applied strains are defined by translating or rotating sets of prisms away from
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their initial resting condition and then pinning them. Applied loads are defined over sets of vertices within
the initial surface discretization.

V. Isotropic Remeshing

In order to deform general surface triangulations of unknown origin and quality, we must mitigate con-
version defects and other discretization deficits such as degenerate edges, high valence vertices, and highly
obtuse angles. We address these issues by applying a feature preserving, isotropic remeshing algorithm before
any other operations in our geometry engine. This algorithm iteratively collapses short edges, splits long
edges, smoothes the tangential distribution of vertices, and swaps edges to minimize valence or eliminate
obtuse angles. The algorithm is described in detail in the Siggraph 2007 Course Notes,20 however, we outline
it below in Algorithm 2.

Algorithm 2 Isotropic Remeshing
1: INPUT: General three dimensional triangulated surface mesh
2: CollapseDegenerateEdges()
3: ClassifyAllVertices()
4: while iteration ≤ maxNumberIterations do
5: SplitAllEdgesLongerThan( 4/3l )
6: CollapseAllEdgesShorterThan( 4/5l )
7: SwapEdgesToReduceMaximumAngle()
8: TangentialSmooth()
9: end while

10: OUTPUT: Approximately isotropic mesh retaining original feature edges and corners

To preserve features such as creases and corners, we apply the classification algorithm of Jiao et al.19

before any geometry modifications. During subsequent remeshing operations, crease edges may only be
collapsed along a crease edge, crease vertices are only smoothed tangentially along the crease, and crease
and corner edges are excluded from all swapping operations.1

In addition to preservation of high-curvature features, all geometry operations are checked to determine
that the proposed operation does not violate the topology of the surface. Operations are also post-checked
by comparison of cosine between pre- and post-normals of all modified triangles. Generally, any operation
that would result in a change in normal vector greater than a tolerance on the order of 1− 2o is rejected.

Figure 7. Feature-sensitive, isotropic remeshing of a business jet legacy geometry - performed on a desktop workstation
in 18 seconds. Initial surface triangulation (shown in blue): 93k triangles. Nearly isotropic, improved mesh (shown in
green): 112k triangles.
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Figure 7 shows the resulting surface discretization of this algorithm applied to a business jet legacy
geometry. The initial surface tessellation contains a number of undesirable conversion defects, such as
high valence vertices and highly obtuse triangles. The remeshing algorithm mitigates these defects while
preserving creases, and other topological properties, of the geometry.

VI. Examples

The methods described above have been combined into a geometry deformation engine written in ANSI
C. We show several examples below demonstrating the process of parameter set identification and shape
deformation.

VI.A. 3D Wing Geometry

The first example legacy geometry is a three dimensional wing surface triangulation containing approximately
22k triangles. The wing was isotropically remeshed, in 8.5 seconds on a desktop workstation, resulting in a
surface triangulation also containing approximately 22k triangles. A parameter set was created by defining
patches based on 10o and 1o thresholds. The components derived from this segmentation, shown in Figure
8, separate the wing root, the upper and lower surfaces, and a number of narrow high curvature patches
near the leading edge.

Figure 8. Three dimensional wing and patch decomposition.

Figure 9 shows the deformation result of an applied load to the top wing surface that loosely corresponds
to sweep. Similarly, Figure 10 shows the deformation result of an applied load to the top wing surface that
loosely corresponds to twist and dihedral. For small deformations, a single linear solve, effected in about 10
seconds on a desktop workstation, suffices. Large scale deformations of a nonlinear nature, require several
iterations of the linearized solution, in total approximately 55 seconds on a desktop workstation.

VI.B. Hypersonic Lifting Body

A second example shows the deformation of a pre-existing hypersonic lifting body consisting of approximately
131k triangles. The automatically determined set of parameters, shown in Figure 11, was developed using a
recursive approach with τ = 10o, 5o, and 2.5o. The patches obtained correspond to obvious vehicle features,
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Figure 9. Uniform shear applied in x direction to top of wing: 23.5k triangles. 10 seconds for single linear solve on a
desktop workstation, 55 seconds for full nonlinear solve. 3.9M sparse matrix entries with average of 28 entries per row
(modified geometry shown in blue).

Figure 10. Uniform force applied in y direction to top of wing: 23.5k triangles. 10 seconds for single linear solve on a
desktop workstation, 55 seconds for full nonlinear solve. 3.9M sparse matrix elements with average of 28 entries per
row (modified geometry shown in blue).
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such as cockpit and wingerons, as well as less intuitive segmentations of the main body lifting surface along
regions of similar curvature.

Figure 11. Hypersonic lifting body legacy geometry: 131k triangles. Parameter set identified in 80 seconds on a desktop
workstation.

Figure 12, left, shows boundary conditions applied for a representative surface deformation. Regions in
the nose and flap sections were constrained, in order to prevent rigid body rotations, and an applied load
was defined over the cockpit region.

Figure 12. Hypersonic lifting body legacy geometry: 27 seconds for single linear solve, 340 seconds for full nonlinear
solve on a desktop workstation. 9.3M sparse matrix elements with average of 12 entries per row.

The full nonlinear PriMo equations were solved iteratively until the 2-norm of the displacement vector
between linear solutions was on the order of 10−7. The resulting deformation, Figure 12, right, highlights the
large amplitude modifications of legacy surface triangulations possible with the PriMo deformation operator.
The volume is markedly increased with a large change in the region near the cockpit and smooth transition
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near constrained patches.

VI.C. Stanford Bunny

The final demonstration case is a legacy triangulation of the “Stanford Bunny”, a surface comprised of
approximately 70k triangles which was obtained from the Stanford University Computer Graphics Labo-
ratory.21 After closing several holes in the underside of the surface discretization, using MeshLab,22 and
performing isotropic remeshing, using the method of Algorithm 2 presented in Section V, the triangulated
surface shown in Figure 13 contains approximately 83k triangles. This triangulation was decomposed into 9
surface patches using a threshold of τ = 10o.

Figure 13. The “Stanford Bunny”: isotropically remeshed and decomposed with τ = 10o, performed in 8.3 seconds on
a desktop workstation. Loads applied to ear and base constrained.

The decomposition corresponds loosely to prominent structural features such as the bunny’s hear, ears,
body, and base. Pursuing a hierarchical decomposition would also provide higher fidelity control over com-
ponents such as the eyes, nose, and feet.

The boundary conditions to the PriMo algorithm include a load applied to the bunny’s left ear backwards
and to the left, as well as a constraint applied to the base of the bunny. Figure 14 shows how the textured
surface in this example provides a good example of the structure-preserving quality of deformations effected
through the use of PriMo. Although there is a significant change in the shape and location of the ear due to
the applied forces, prominent features, such as eyes, feet, and tail, retain small scale detail similar to that of
the initial geometry.

VII. Conclusions and Future Work

We have presented a CAD-free geometry engine for use with complex, three-dimensional triangulated
surfaces in support of shape optimization. Our primary contributions have been the use of a structure-
preserving deformation operator coupled to an automated method for parameter set identification. This
deformation operator leads to intuitive shape modifications by modeling a surface as an elastic engineering
material that responds to applied loads and strains. These loads and strains are applied over a hierarchical
set of patches that are created automatically by decomposing the initial geometry into regions of similar
curvature. We have demonstrated the ability of this process to create intuitive surface deformations on
geometries comprised of up to 131k triangles with timings on the order of several minutes using commodity
hardware.
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Figure 14. Deformed Stanford Bunny. 31 seconds for single linear solve, 326 seconds for full nonlinear solve on a
desktop workstation. 8.3M sparse matrix elements with average of 17 entries per row.

The next goal of this effort is integration with the NASA Cart3D design suite in order to enable shape
optimization studies on legacy geometries as well as in situations where linking to CAD or a user-defined
geometry generator is not possible. There are several remaining tasks required to fully realize this objective.
First, we plan to finalize implementation of an agglomeration multigrid solver for use with PriMo in order
to decrease time and memory requirements. Secondly, we plan to improve the parameterization process by
linking it to sensitivity information in order to decompose patches at each level in the hierarchy for which the
vertex locations have the largest impact on the shape optimization objective function. Finally, we plan to
use the recursive nature of the derived parameterization to drive a hierarchical optimization process, starting
with parameters representing global changes and iterating to local shape modification.
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